Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(1): 132-136, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38156983

RESUMEN

A one-pot highly selective approach to the synthesis of hitherto unknown tetrahydropyrrolo[2',1':3,4]pyrazino[1,2-b]pyrrolo[2',1':3,4]pyrazino[1,2-e][1,2,4,5]tetrazine ensembles from simple and available N-allenylpyrrole-2-carbaldehydes and hydrazines has been developed. The reaction proceeds in a very facile manner and tolerates different substituents in both pyrroles and hydrazines. The novel class of organic compounds, tetrahydrodipyrrolodipyrazinotetrazines, proves to be promising pH-sensitive switchers to deliver N-aminopyrrolopyrazinium salts in acidic media and then again tetrahydrodipyrrolodipyrazinotetrazines in basic media. Both transformations give the products in quantitative yields.

2.
Genome Med ; 15(1): 62, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612755

RESUMEN

BACKGROUND: Long-read sequencing is increasingly used to uncover structural variants in the human genome, both functionally neutral and deleterious. Structural variants occur more frequently in regions with a high homology or repetitive segments, and one rearrangement may predispose to additional events. Bartter syndrome type 3 (BS 3) is a monogenic tubulopathy caused by deleterious variants in the chloride channel gene CLCNKB, a high proportion of these being large gene deletions. Multiplex ligation-dependent probe amplification, the current diagnostic gold standard for this type of mutation, will indicate a simple homozygous gene deletion in biallelic deletion carriers. However, since the phenotypic spectrum of BS 3 is broad even among biallelic deletion carriers, we undertook a more detailed analysis of precise breakpoint regions and genomic structure. METHODS: Structural variants in 32 BS 3 patients from 29 families and one BS4b patient with CLCNKB deletions were investigated using long-read and synthetic long-read sequencing, as well as targeted long-read sequencing approaches. RESULTS: We report a ~3 kb duplication of 3'-UTR CLCNKB material transposed to the corresponding locus of the neighbouring CLCNKA gene, also found on ~50 % of alleles in healthy control individuals. This previously unknown common haplotype is significantly enriched in our cohort of patients with CLCNKB deletions (45 of 51 alleles with haplotype information, 2.2 kb and 3.0 kb transposition taken together, p=9.16×10-9). Breakpoint coordinates for the CLCNKB deletion were identifiable in 28 patients, with three being compound heterozygous. In total, eight different alleles were found, one of them a complex rearrangement with three breakpoint regions. Two patients had different CLCNKA/CLCNKB hybrid genes encoding a predicted CLCNKA/CLCNKB hybrid protein with likely residual function. CONCLUSIONS: The presence of multiple different deletion alleles in our cohort suggests that large CLCNKB gene deletions originated from many independently recurring genomic events clustered in a few hot spots. The uncovered associated sequence transposition haplotype apparently predisposes to these additional events. The spectrum of CLCNKB deletion alleles is broader than expected and likely still incomplete, but represents an obvious candidate for future genotype/phenotype association studies. We suggest a sensitive and cost-efficient approach, consisting of indirect sequence capture and long-read sequencing, to analyse disease-relevant structural variant hotspots in general.


Asunto(s)
Síndrome de Bartter , Humanos , Haplotipos , Alelos , Genoma Humano , Canales de Cloruro/genética
4.
Commun Biol ; 6(1): 40, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639529

RESUMEN

Astrocytes are resident glial cells of the central nervous system (CNS) that play complex and heterogeneous roles in brain development, homeostasis and disease. Since their vast involvement in health and disease is becoming increasingly recognized, suitable and reliable tools for studying these cells in vivo and in vitro are of utmost importance. One of the key challenges hereby is to adequately mimic their context-dependent in vivo phenotypes and functions in vitro. To better understand the spectrum of astrocytic variations in defined settings we performed a side-by-side-comparison of murine embryonic stem cell (ESC)-derived astrocytes as well as primary neonatal and adult astrocytes, revealing major differences on a functional and transcriptomic level, specifically on proliferation, migration, calcium signaling and cilium activity. Our results highlight the need to carefully consider the choice of astrocyte origin and phenotype with respect to age, isolation and culture protocols based on the respective biological question.


Asunto(s)
Astrocitos , Neuroglía , Animales , Ratones , Astrocitos/fisiología , Diferenciación Celular , Sistema Nervioso Central , Células Madre Embrionarias
5.
Sci Total Environ ; 853: 158931, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36228784

RESUMEN

The use of RNA sequencing from wastewater samples is a valuable way for estimating infection dynamics and circulating lineages of SARS-CoV-2. This approach is independent from testing individuals and can therefore become the key tool to monitor this and potentially other viruses. However, it is equally important to develop easily accessible and scalable tools which can highlight critical changes in infection rates and dynamics over time across different locations given sequencing data from wastewater. Here, we provide an analysis of lineage dynamics in Berlin and New York City using wastewater sequencing and present PiGx SARS-CoV-2, a highly reproducible computational analysis pipeline with comprehensive reports. This end-to-end pipeline includes all steps from raw data to shareable reports, additional taxonomic analysis, deconvolution and geospatial time series analyses. Using simulated datasets (in silico generated and spiked-in samples) we could demonstrate the accuracy of our pipeline calculating proportions of Variants of Concern (VOC) from environmental as well as pre-mixed samples (spiked-in). By applying our pipeline on a dataset of wastewater samples from Berlin between February 2021 and January 2022, we could reconstruct the emergence of B.1.1.7(alpha) in February/March 2021 and the replacement dynamics from B.1.617.2 (delta) to BA.1 and BA.2 (omicron) during the winter of 2021/2022. Using data from very-short-reads generated in an industrial scale setting, we could see even higher accuracy in our deconvolution. Lastly, using a targeted sequencing dataset from New York City (receptor-binding-domain (RBD) only), we could reproduce the results recovering the proportions of the so-called cryptic lineages shown in the original study. Overall our study provides an in-depth analysis reconstructing virus lineage dynamics from wastewater. While applying our tool on a wide range of different datasets (from different types of wastewater sample locations and sequenced with different methods), we show that PiGx SARS-CoV-2 can be used to identify new mutations and detect any emerging new lineages in a highly automated and scalable way. Our approach can support efforts to establish continuous monitoring and early-warning projects for detecting SARS-CoV-2 or any other pathogen.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Aguas Residuales , Ciudad de Nueva York , Manosiltransferasas
6.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36259389

RESUMEN

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Células Madre Pluripotentes Inducidas , Humanos , Ratas , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Microtomografía por Rayos X , Células Madre Pluripotentes Inducidas/metabolismo , Hipertensión/complicaciones , Hipertensión/genética , Miocitos Cardíacos/metabolismo , Cardiomegalia , ARN
7.
Genome Biol Evol ; 14(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35778793

RESUMEN

The Roborovski dwarf hamster Phodopus roborovskii belongs to the Phodopus genus, one of the seven within Cricetinae subfamily. Like other rodents such as mice, rats, or ferrets, hamsters can be important animal models for a range of diseases. Whereas the Syrian hamster from the genus Mesocricetus is now widely used as a model for mild-to-moderate coronavirus disease 2019, Roborovski dwarf hamster shows a severe-to-lethal course of disease upon infection with the novel human coronavirus severe acute respiratory syndrome coronavirus 2.


Asunto(s)
COVID-19 , Phodopus , Animales , COVID-19/genética , Cricetinae , Hurones , Humanos , Ratones , Modelos Animales , Ratas
8.
Pharmaceutics ; 14(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35890221

RESUMEN

Beneficial features of biocompatible high-capacity UiO-66 nanoparticles, mesoporous SiO2, and folate-conjugated pluronic F127 were combined to prepare the core-shell UiO-66@SiO2/F127-FA drug delivery carrier for targeted cellular uptake in cancer treatment. UiO-66 and UiO-66-NH2 nanoparticles with a narrow size and shape distribution were used to form a series of core-shell MOF@SiO2 structures. The duration of silanization was varied to change the thickness of the SiO2 shell, revealing a nonlinear dependence that was attributed to silicon penetration into the porous MOF structure. Doxorubicin encapsulation showed a similar final loading of 5.6 wt % for both uncoated and silica-coated particles, demonstrating the potential of the nanocomposite's application in small molecule delivery. Silica coating improved the colloidal stability of the composites in a number of model physiological media, enabled grafting of target molecules to the surface, and prevented an uncontrolled release of their cargo, with the drawback of decreased overall porosity. Further modification of the particles with the conjugate of pluronic and folic acid was performed to improve the biocompatibility, prolong the blood circulation time, and target the encapsulated drug to the folate-expressing cancer cells. The final DOX-loaded UiO-66@SiO2/F127-FA nanoparticles were subjected to properties characterization and in vitro evaluation, including studies of internalization into cells and antitumor activity. Two cell lines were used: MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes, and RAW 264.7 macrophages without folate overexpression. These findings will provide a potential delivery system for DOX and increase the practical value of MOFs.

9.
Semin Cancer Biol ; 86(Pt 2): 555-567, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472397

RESUMEN

With the ultimate goal of increasing tumor accumulation of therapeutics, various nanocarriers have been designed to overcome biological barriers encountered at each stage, from drug administration to the cancerous lesion. Stabilizing circulation and functionalization of the targeting surface impart high tumor accumulation properties to nanocarriers. However, various cells can recognize and infiltrate the tumor microenvironment more efficiently than synthetic carriers via overexpression of adhesive ligands, particularly in inflamed stroma of tumors. Thus, a new field of nanomedicine, called biomimicry, has evolved to generate nanoparticles with the same biological characteristics as cells that naturally infiltrate tumors. Revolutionary synthetic processes have been developed to transfer the cell membrane of leukocytes and mesenchymal cells to synthetic carriers. In addition, cells can generate their own "nanocarriers," known as exosomes, to transport molecular messages to distant sites, while biomimicry of viral and bacterial agents allows high targeting efficiency towards inflammatory immune cells. Alterations in the protein expression in cancer cells caused by inflammation can also be exploited for drug delivery. Finally, new developments in biomimetic drug delivery focus on turning the infiltrating cells into microcarriers that can actively perfuse the tumor and eventually release their therapeutic payload. In this review, we summarize recent developments in biomimetic drug delivery with a particular focus on targeting the tumor inflammatory microenvironment.


Asunto(s)
Portadores de Fármacos , Neoplasias , Humanos , Portadores de Fármacos/uso terapéutico , Biomimética , Nanomedicina , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inflamación/tratamiento farmacológico , Microambiente Tumoral
10.
Pharmaceutics ; 14(3)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35335951

RESUMEN

Capsules with shells based on nanoparticles of different nature co-assembled at the interface of liquid phases of emulsion are promising carriers of lipophilic drugs. To obtain such capsules, theoretically using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and experimentally using dynamic light-scattering (DLS) and transmission electron microscopy (TEM) methods, the interaction of like-charged silica nanoparticles and detonation nanodiamonds in an aqueous solution was studied and their ratios selected for the formation of submicron-sized colloidosomes. The resulting colloidosomes were modified with additional layers of nanoparticles and polyelectrolytes, applying LbL technology. As a model anti-cancer drug, thymoquinone was loaded into the developed capsules, demonstrating a significant delay of the release as a result of colloidosome surface modification. Fluorescence flow cytometry and confocal laser scanning microscopy showed efficient internalization of the capsules by MCF7 cancer cells. The obtained results demonstrated a high potential for nanomedicine application in the field of the drug-delivery system development.

11.
Mater Today Adv ; 14: 100214, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36785703

RESUMEN

The recent successful application of lipid-based nanoparticles as delivery vehicles in COVID-19 vaccines demonstrated the superior potential of nanoparticle-based technology for targeted drug delivery in biomedicine. Among novel, rapidly advancing delivery platforms, the inorganic nano/microparticles gradually reach new heights and attract well-deserved attention among scientists and clinicians. Calcium carbonate in its vaterite form is used as a biocompatible carrier for a progressively increasing number of biomedical applications. Its growing popularity is conferred by beneficial porosity of particles, high mechanical stability, biodegradability under certain physiological conditions, ability to provide a continuous steady release of bioactives, preferential safety profile, and low cost, which make calcium carbonate a suitable entity of highly efficacious formulations for controlled drug delivery and release. The focal point of the current review is the success of the recent vaterite applications in the delivery of various diagnostics and therapeutic drugs. The manuscript highlights the nuances of drug loading in vaterite particles, connecting it with particle morphology, size, and charge of the loaded molecules, payload concentration, mono- or multiple drug loading. The manuscript also depicts recent successful methods of increasing the loading capacity developed for vaterite carriers. In addition, the review describes the various administration routes for vaterite particles with bioactive payloads, which were reported in recent years. Special attention is given to the multi-drug-loaded vaterite particles ("molecular cocktails") and reports on their successful delivery in vitro and in vivo.

12.
Front Bioeng Biotechnol ; 9: 783834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926429

RESUMEN

Bioprinting emerges as a powerful flexible approach for tissue engineering with prospective capability to produce tissue on demand, including biomimetic hollow-core fiber structures. In spite of significance for tissue engineering, hollow-core structures proved difficult to fabricate, with the existing methods limited to multistage, time-consuming, and cumbersome procedures. Here, we report a versatile cell-friendly photopolymerization approach that enables single-step prototyping of hollow-core as well as solid-core hydrogel fibers initially loaded with living cells. This approach was implemented by extruding cell-laden hyaluronic acid glycidyl methacrylate hydrogel directly into aqueous solution containing free radicals generated by continuous blue light photoexcitation of the flavin mononucleotide/triethanolamine photoinitiator. Diffusion of free radicals from the solution to the extruded structure initiated cross-linking of the hydrogel, progressing from the structure surface inwards. Thus, the cross-linked wall is formed and its thickness is limited by penetration of free radicals in the hydrogel volume. After developing in water, the hollow-core fiber is formed with centimeter range of lengths. Amazingly, HaCaT cells embedded in the hydrogel successfully go through the fabrication procedure. The broad size ranges have been demonstrated: from solid core to 6% wall thickness of the outer diameter, which was variable from sub-millimeter to 6 mm, and Young's modulus ∼1.6 ± 0.4 MPa. This new proof-of-concept fibers photofabrication approach opens lucrative opportunities for facile three-dimensional fabrication of hollow-core biostructures with controllable geometry.

13.
Pharmaceutics ; 14(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35056960

RESUMEN

Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.

14.
J Biomed Mater Res B Appl Biomater ; 109(4): 527-537, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32945122

RESUMEN

Presently, most of anticancer drugs are high toxic for normal cells and, and as a result, they have severe side effects. Moreover, most of the formulations are lipophilic and have poor selectivity. To overcome these limitations, various drug delivery systems could be proposed. The aim of the current study was to fabricate novel polysaccharide nanocontainers (NC) by one-step ultrasonication technique and to evaluate their accumulation efficacy and cytotoxicity in 2D (monolayer culture) and 3D (tumor spheroids) in vitro models. NC with mean sizes in a range of 340-420 nm with the core-shell structure are synthetized and characterized. The NC shell is composed from diethylaminoethyl dextran/xanthan gum polyelectrolyte complex, while the hydrophobic core was loaded with the lipophilic anticancer drug thymoquinone. To enhance NC accumulation in human breast adenocarcinoma MCF-7 cells, the NC surface was modified with poly-L-lysine (PLL) or polyethylene glycol. Cell uptake of the NC loaded with Nile Red into the tumor cells was investigated by laser scanning confocal microscopy, fluorescent flow cytometry and fluorimetry. Modification of the NC with PLL allowed to obtain the optimal drug delivery system with maximal cytotoxicity, which was tested by MTT-test. The developed NC are promising for lipophilic anticancer drug delivery.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Benzoquinonas/administración & dosificación , Embalaje de Medicamentos/instrumentación , Sistema de Administración de Fármacos con Nanopartículas , Antineoplásicos Fitogénicos/química , Benzoquinonas/química , Técnicas de Cultivo Tridimensional de Células , DEAE Dextrano , Emulsiones , Femenino , Citometría de Flujo , Fluorometría , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Células MCF-7 , Microscopía Confocal , Oxazinas/análisis , Polietilenglicoles , Polilisina , Polisacáridos Bacterianos , Sonicación , Esferoides Celulares/efectos de los fármacos
15.
Colloids Surf B Biointerfaces ; 184: 110464, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518837

RESUMEN

Submicrocapsules were prepared from diethylaminoethyl dextran (DEAE-D), xanthan gum (XG) and bovine serum albumin (BSA) on oil cores by ultrasonic treatment. These capsules were modified with poly-L-lysine (PLL) via electrostatic adsorption. The behavior of the capsules was investigated at an air-water interface after their introduction into an aqueous subphase. The interaction of the capsules with 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayer formed on the water surface (model cellular membrane) was studied both upon their introduction under the condensed monolayer and with the use of a dilute colloidal solution of the capsules as a subphase. Biodegradation of the proteinaceous capsules with subsequent oil-core release was demonstrated by influence of pronase. The Langmuir lipid monolayer was found to be a good model for investigation of drug release from the capsules in the presence of the cellular membrane.


Asunto(s)
Cápsulas/química , Membrana Celular/química , Membrana Dobles de Lípidos/química , Lípidos/química , Polímeros/química , Adsorción , Animales , Cápsulas/metabolismo , Bovinos , Membrana Celular/metabolismo , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/metabolismo , Polímeros/metabolismo , Albúmina Sérica Bovina/química , Electricidad Estática , Propiedades de Superficie , Agua/química
16.
J Pharm Pharmacol ; 70(9): 1164-1173, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29956328

RESUMEN

OBJECTIVES: Anxiolytic drug zolpidem was incorporated into the microcontainers based on mesoporous calcium carbonate particles modified by diethylaminoethyl-dextran/hyaluronic acid shell. The release of zolpidem in saline solution and in polymer film modelling nasal mucosa was investigated. The anxiolytic effect of zolpidem upon intranasal administration of microcontainers and free medicine was determined by in vivo experiments on mice. METHODS: The structures of all compounds during zolpidem synthesis were established using nuclear magnetic resonance spectroscopy. The loading efficacy and release kinetics of zolpidem were analysed by spectrophotometry. Surface morphology of formulation was investigated by scanning electron microscopy. To determine the effect of zolpidem-loaded containers administration by the intranasal route in vivo experiments was carried out applying the open field test. KEY FINDINGS: Nasal administration of zolpidem in the form of the microcontainers based on mesoporous calcium carbonate particles modified by diethylaminoethyl-dextran/hyaluronic acid shell has a pronounced anxiolytic effect on the behaviour of the animals in the open field test. CONCLUSIONS: The polyelectrolyte shell deposited together with zolpidem enhances the loading efficacy of the microcontainers. In vivo experiments on mice demonstrate increase in anxiolytic effect of zolpidem in microcontainers compared with upon intranasal administration of free medicine.


Asunto(s)
Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Mucosa Nasal/efectos de los fármacos , Zolpidem/administración & dosificación , Zolpidem/síntesis química , Administración Intranasal , Animales , Composición de Medicamentos , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/síntesis química , Masculino , Ratones , Ratones Endogámicos BALB C
17.
Colloids Surf B Biointerfaces ; 170: 312-321, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29936384

RESUMEN

Aiming to explore elevated temperatures as a tool for miniaturization of biodegradable polymer multilayer capsules, assembled on spherical vaterite micron- and submicron-sized particles, we subject the shells composed of dextran sulfate (DS) and poly-L-arginine (Parg) to a heat treatment. Changes of the capsule size are studied at various temperatures and ionic strengths of the continuous phase. Unlike some synthetic polymer multilayer shells (their response to heat treatment depends on the number of layers and their arrangement), the biodegradable Parg/DS capsules exhibit size reduction and profound compaction regardless of their initial size, number of polymer layers and polymer layer sequence. The capsule response to heat is stable at ionic strengths of the continuous phase not exceeding 0.1 M NaCl.


Asunto(s)
Carbonato de Calcio/química , Calor , Péptidos/química , Cápsulas/química , Sulfato de Dextran/química , Electrólitos/química , Oxidación-Reducción , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
18.
J Microencapsul ; 35(7-8): 657-666, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30669903

RESUMEN

The aim of this study was to develop mesoporous containers for entrapment of imidazopyridines, such as sedative-hypnotic medicine zolpidem, anxiolytic agent alpidem and their derivatives. For this purpose, calcium carbonate (size 1.2 µm (PDI: 0.6), zeta potential: -10 mV), manganese carbonate (2.5 µm (PDI: 0.5), zeta potential: -12 mV) and titanium dioxide particles (3.7 µm (PDI: 0.4), zeta potential: -15 mV) were used. The compounds were encapsulated applying two techniques: adsorption on the preformed particles and co-precipitation during the synthesis of the particles. The polymer shell of the containers was formed by electrostatic adsorption of polyelectrolytes on the surface of the particles. The best encapsulation efficacy was shown for zolpidem incorporated into calcium carbonate (5.4%) and manganese carbonate (4.6%) by adsorption. Release of the compounds from the containers based on the proposed particles were characterised by the short time burst effect (<10 min) followed by desorption prolongation by formation of polymer shell. X-ray microtomography results demonstrate the prolonged retention of the containers with the mucoadhesive shell in the nasal cavity.


Asunto(s)
Ansiolíticos/administración & dosificación , Portadores de Fármacos/química , Hipnóticos y Sedantes/administración & dosificación , Imidazoles/administración & dosificación , Piridinas/administración & dosificación , Zolpidem/administración & dosificación , Administración Intranasal , Adsorción , Animales , Ansiolíticos/farmacocinética , Carbonato de Calcio/química , Carbonatos/química , Liberación de Fármacos , Humanos , Hipnóticos y Sedantes/farmacocinética , Imidazoles/farmacocinética , Manganeso/química , Ratones , Cavidad Nasal/metabolismo , Tamaño de la Partícula , Polielectrolitos/química , Porosidad , Piridinas/farmacocinética , Titanio/química , Zolpidem/farmacocinética
19.
Nat Commun ; 8: 14262, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186126

RESUMEN

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.


Asunto(s)
Biomarcadores de Tumor/genética , Cetuximab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Persona de Mediana Edad , Adulto Joven
20.
Biol Methods Protoc ; 2(1): bpx001, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32161784

RESUMEN

Here, we describe an electrophoresis free assay for characterizing Tn5 transposomes fragmentation efficiency in a tagmentation reaction, in which double-stranded DNA is fragmented and tagged with adapter sequences. The assay uses plasmid DNA as a reference tagmentation substrate. Fragmentation efficiency is analyzed by comparative qPCR which measures the difference (ΔCt) in amplification of a specific plasmid region before and after tagmentation: more efficient fragmentation is characterized by a larger number of cleavage events within the amplified region, a delayed increase in the amplification curve and as a result, a larger ΔCt. Tagmentation reactions characterized with the same ΔCt exhibit the same fragment size distribution on an agarose gel. The ΔCt values measured can be used to quantitatively determine the relative performance of Tn5 transposome assemblies in optimization experiments and to standardize between batch variations in transposomes for use in next-generation sequencing library preparation. Moreover, the use of a reference tagmentation template added during next-generation sequencing library preparation enabled monitoring of the input DNA fragmentation. The presented qPCR-based assay is quick, contamination-safe, high-throughput and cost-efficient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...